Electric Vehicle Charging and Load Shedding

By William Mollenkopf

Electric Vehicle Charging and Load Shedding

• Fueling: The gas station right? (Reality is typically at home)

What if...

You could fuel your car for free (or for very little) while out on the go, without being inconvenienced?

Image Sources: (Left): http://www.pluginrecharge.com/2010/05/ucfs-new-solar-powered-charging-station.html (Right): http://www.simon.com/mall/waterford-lakes-town-center

(Background): Electric Bills

Meter reading - Meter

- Consumers are charged (more or less) a flat rate for how much power they consumed.
- Businesses are charged this way as well, but with an expensive peak demand fees as well.
- Example: \$10.61 * 358 kW = \$3,798.38 Demand Fee per month (In addition to typical consumption rate charges)

Meter reading - Met	er		
Current reading		08191	
Previous reading	- 07540		
kWh constant		× 240	
kWh used		156240	
Demand reading		1.49	
kW constant		x 240.00	
Demand kW		358	
Energy usage	1	This	
	Last	This	
	Year	1001	
kWh this month	160800	156240	
Service days	32	32	
kWh per day	5025	4882	
**The electric servi			
Customer charge:		\$19.48	
Fuel:	\$4,890.31		
(\$0.031300 per kW	(h)		
Non-fuel:		\$3,181.05	
(\$0.020360 per kW	(h)		
Demand:		\$3,798.38	
(\$10.61 per kW)			

Enroll now in FPL Budget Billing by paying \$10,590.38 in 1 payment by the due date instead of \$13,055.80. Your bill will be about the same each month & stabilized year-round. Learn more at FPL.com/bb

Total amount you owe		\$13,055.80
Total new charges		\$13,055.80
Franchise charge	757.57	
Gross receipts tax	307.46	
Storm charge	101.55	
Electric service amount	11,889.22**	
New charges (Rate: GSD-1 GENERAL SE	RVICE DEMAND)	
Balance before new charges		\$0.00
Payment received - Thank you		12,552.49 CF
Amount of your last bill		12,552.49

 Payment received after November 30, 2015 is considered LATE; a late payment charge of 0.395830% will apply.

(Background): Electric Bills-> Peak Demands

- Why? Complex reasons, but *my* basic understanding is due to how power is generated.
- How are they calculated?
 - Several ways, but one in particular is the:
 - The Sliding Window
 (Example Sliding Window: 30 minutes, with 15 second slides)

(Background): Load Shedding

- Staying below the peak!
- How to perform shedding?: Controlling (on/off/partial consumption) of devices consuming power.

(Background): PID Controller Algorithm (Proportional-Integral-

Derivative)

PID controller theory

$$\mathbf{u}(t) = \mathbf{MV}(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau + K_d \frac{d}{dt} e(t)$$

where

 K_p : Proportional gain, a tuning parameter

 K_i : Integral gain, a tuning parameter

 K_d : Derivative gain, a tuning parameter

e: Error = SP - PV

t: Time or instantaneous time (the present)

au: Variable of integration; takes on values from time 0 to the present t.

Equivalently, the transfer function i

$$L(s) = K_p + K_i/s + K_d s$$

where

s: complex number frequency

Image Sources: https://en.wikipedia.org/wiki/PID_controller

(Main Focus): The Great Horizon

"An Optomized EV Charging Algorithm Using Control Horizon Method"

Abstract.

"In this paper, the optimized charging algorithm in electric vehicle (EV) is proposed using control horizon method. A model predictive control (MPC) with linear programming (LP) is used for optimal control, and the time-of-use (TOU) price is included to calculate the energy costs. Simulation results show that the reductions of energy cost and peak power can be obtained using proposed algorithms."

Source: http://onlinepresent.org/proceedings/vol58_2014/24.pdf

(Main Focus): The Great Horizon (Cont.)

- We both have peaks? (Well kind of?)
 - Based on: Stepwise Power tariffs and TOU (Time of Use)

Graph Explanation

- 15 minute switching
- 9 hour range
- Starts at 11am
- Prior to Window = historical values
- After Window = future predicted values
- Each vertical axis = 15 minutes window where predictions are made and discarded every 15 minutes.
- (1) On/off control algorithm ($u_i(k) = 0$ or 1, $k = 1, \dots, N$).
- (2) MPC control algorithm with LP ($0 \le u_i(k) \le 1$, $k = 1, \dots, N$).

Fig. 1. Control horizon switching strategy

Source: http://onlinepresent.org/proceedings/vol58_2014/24.pdf

(Main Focus): The Great Horizon (Cont.)

Comparison:

- On/Off Method Versus Model Predictive Control (MPC) and Linear Programming (LP)
- 4.7% energy savings with MPC and LP over On/Off Method

Fig. 2. Energy rate for temperature control: (a) On/off, (b) MPC with LP

Source: http://onlinepresent.org/proceedings/vol58_2014/24.pdf

(Future Focus): Moving Forward

- Paper states: more research and a more mature computer simulation is necessary to make improvements.
- How do we apply their algorithm, or at least the MPC and LP to:
 - Our 30 minute, 15 second sliding window
 - \circ Instead of their one continuous flat peak they wish to avoid.
 - Allow businesses to offer EV charging without taking much of a hit to their power consumption?

Think about it... (Possible discussion points)

- What if we could have a system where we can both implement EV chargers AND perform load shedding?
- Ideas to obtain this: (For details, ask me later!)
 - Incorporate solar panels
 - MPC and LP
 - Possibly a network of EV cars that discharge based on advanced/agreed ruleset
- Consider:
 - How can people exploit EV Charging Stations?
 - A future where we shop, and explore the city based on what places have the best/cheapest EV chargers.

(End): Main Sources

- Chang-Jin Boo, Bong-Woon Ko, Ho-Chan Kim. "An Optimized EV Charging Algorithm Using Control Horizon Method." in *Advanced Science and Technology Letters* Vol.58 (Electrical Engineering 2014), pp.113-116 < http://onlinepresent.org/proceedings/vol58_2014/24.pdf
- Frank Stern, Navigant. "Peak Demand and Time- Differentiated Energy Savings" < http://www.nrel.gov/extranet/ump/docs/peak_impact_061812.docx>
- Brayden Automation Corp < http://energysentry.com/prod%20docs/educational%20literature/How%20does%20Peak%20Demand%20Occur.pdf>
- EG Energy Controls Ltd. "Load Shedding, Demand Control, ..." < http://www.egenergy.com/peak-demand-management>
- Duke Energy "Understanding Demand and Consumption."
 http://www.think-energy.net/KWvsKWH.htm

(End): Image Sources

- Plugin Recharge. "Plugin...Recharge!: UCF's New Solar..."
 http://www.pluginrecharge.com/2010/05/ucfs-new-solar-powered-charging-station.html
- Simon Property Group. "Welcome To Waterford Lakes Town Center..." http://www.simon.com/mall/waterford-lakes-town-center
- Wikipedia. "PID Controller"
 https://en.wikipedia.org/wiki/PID_controller>
- Government Technology. "Minnesota Cities Plan for Electric Vehicles"
 http://www.govtech.com/transportation/Minnesota-Cities-Plan-for-Electric-Vehicles.html>

(End): Questions?

Image Sources: http://www.govtech.com/transportation/Minnesota-Cities-Plan-for-Electric-Vehicles.html